/*
* Calcurse - text-based organizer
*
* Copyright (c) 2004-2012 calcurse Development Team <misc@calcurse.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the
* following disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the
* following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Send your feedback or comments to : misc@calcurse.org
* Calcurse home page : http://calcurse.org
*
*/
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <sys/types.h>
#include <time.h>
#include "calcurse.h"
llist_ts_t recur_alist_p;
llist_t recur_elist;
static struct recur_event bkp_cut_recur_event;
static struct recur_apoint bkp_cut_recur_apoint;
static void free_exc(struct excp *exc)
{
mem_free(exc);
}
static void free_exc_list(llist_t * exc)
{
LLIST_FREE_INNER(exc, free_exc);
LLIST_FREE(exc);
}
static int exc_cmp_day(struct excp *a, struct excp *b)
{
return a->st < b->st ? -1 : (a->st == b->st ? 0 : 1);
}
static void recur_add_exc(llist_t * exc, long day)
{
struct excp *o = mem_malloc(sizeof(struct excp));
o->st = day;
LLIST_ADD_SORTED(exc, o, exc_cmp_day);
}
static void exc_dup(llist_t * in, llist_t * exc)
{
llist_item_t *i;
LLIST_INIT(in);
if (exc) {
LLIST_FOREACH(exc, i) {
struct excp *p = LLIST_GET_DATA(i);
recur_add_exc(in, p->st);
}
}
}
void recur_event_free_bkp(void)
{
if (bkp_cut_recur_event.mesg) {
mem_free(bkp_cut_recur_event.mesg);
bkp_cut_recur_event.mesg = 0;
}
if (bkp_cut_recur_event.rpt) {
mem_free(bkp_cut_recur_event.rpt);
bkp_cut_recur_event.rpt = 0;
}
free_exc_list(&bkp_cut_recur_event.exc);
erase_note(&bkp_cut_recur_event.note);
}
void recur_apoint_free_bkp(void)
{
if (bkp_cut_recur_apoint.mesg) {
mem_free(bkp_cut_recur_apoint.mesg);
bkp_cut_recur_apoint.mesg = 0;
}
if (bkp_cut_recur_apoint.rpt) {
mem_free(bkp_cut_recur_apoint.rpt);
bkp_cut_recur_apoint.rpt = 0;
}
free_exc_list(&bkp_cut_recur_apoint.exc);
erase_note(&bkp_cut_recur_apoint.note);
}
static void recur_event_dup(struct recur_event *in, struct recur_event *bkp)
{
EXIT_IF(!in || !bkp, _("null pointer"));
bkp->id = in->id;
bkp->day = in->day;
bkp->mesg = mem_strdup(in->mesg);
bkp->rpt = mem_malloc(sizeof(struct rpt));
bkp->rpt->type = in->rpt->type;
bkp->rpt->freq = in->rpt->freq;
bkp->rpt->until = in->rpt->until;
exc_dup(&bkp->exc, &in->exc);
if (in->note)
bkp->note = mem_strdup(in->note);
}
static void recur_apoint_dup(struct recur_apoint *in, struct recur_apoint *bkp)
{
EXIT_IF(!in || !bkp, _("null pointer"));
bkp->start = in->start;
bkp->dur = in->dur;
bkp->state = in->state;
bkp->mesg = mem_strdup(in->mesg);
bkp->rpt = mem_malloc(sizeof(struct rpt));
bkp->rpt->type = in->rpt->type;
bkp->rpt->freq = in->rpt->freq;
bkp->rpt->until = in->rpt->until;
exc_dup(&bkp->exc, &in->exc);
if (in->note)
bkp->note = mem_strdup(in->note);
}
void recur_apoint_llist_init(void)
{
LLIST_TS_INIT(&recur_alist_p);
}
static void recur_apoint_free(struct recur_apoint *rapt)
{
mem_free(rapt->mesg);
if (rapt->note)
mem_free(rapt->note);
if (rapt->rpt)
mem_free(rapt->rpt);
free_exc_list(&rapt->exc);
mem_free(rapt);
}
static void recur_event_free(struct recur_event *rev)
{
mem_free(rev->mesg);
if (rev->note)
mem_free(rev->note);
if (rev->rpt)
mem_free(rev->rpt);
free_exc_list(&rev->exc);
mem_free(rev);
}
void recur_apoint_llist_free(void)
{
LLIST_TS_FREE_INNER(&recur_alist_p, recur_apoint_free);
LLIST_TS_FREE(&recur_alist_p);
}
void recur_event_llist_free(void)
{
LLIST_FREE_INNER(&recur_elist, recur_event_free);
LLIST_FREE(&recur_elist);
}
static int
recur_apoint_cmp_start(struct recur_apoint *a, struct recur_apoint *b)
{
return a->start < b->start ? -1 : (a->start == b->start ? 0 : 1);
}
static int recur_event_cmp_day(struct recur_event *a, struct recur_event *b)
{
return a->day < b->day ? -1 : (a->day == b->day ? 0 : 1);
}
/* Insert a new recursive appointment in the general linked list */
struct recur_apoint *recur_apoint_new(char *mesg, char *note, long start,
long dur, char state, int type, int freq,
long until, llist_t * except)
{
struct recur_apoint *rapt = mem_malloc(sizeof(struct recur_apoint));
rapt->rpt = mem_malloc(sizeof(struct rpt));
rapt->mesg = mem_strdup(mesg);
rapt->note = (note != NULL) ? mem_strdup(note) : 0;
rapt->start = start;
rapt->state = state;
rapt->dur = dur;
rapt->rpt->type = type;
rapt->rpt->freq = freq;
rapt->rpt->until = until;
if (except) {
exc_dup(&rapt->exc, except);
free_exc_list(except);
} else
LLIST_INIT(&rapt->exc);
LLIST_TS_LOCK(&recur_alist_p);
LLIST_TS_ADD_SORTED(&recur_alist_p, rapt, recur_apoint_cmp_start);
LLIST_TS_UNLOCK(&recur_alist_p);
return rapt;
}
/* Insert a new recursive event in the general linked list */
struct recur_event *recur_event_new(char *mesg, char *note, long day, int id,
int type, int freq, long until,
llist_t * except)
{
struct recur_event *rev = mem_malloc(sizeof(struct recur_event));
rev->rpt = mem_malloc(sizeof(struct rpt));
rev->mesg = mem_strdup(mesg);
rev->note = (note != NULL) ? mem_strdup(note) : 0;
rev->day = day;
rev->id = id;
rev->rpt->type = type;
rev->rpt->freq = freq;
rev->rpt->until = until;
if (except) {
exc_dup(&rev->exc, except);
free_exc_list(except);
} else
LLIST_INIT(&rev->exc);
LLIST_ADD_SORTED(&recur_elist, rev, recur_event_cmp_day);
return rev;
}
/*
* Correspondance between the defines on recursive type,
* and the letter to be written in file.
*/
char recur_def2char(enum recur_type define)
{
char recur_char;
switch (define) {
case RECUR_DAILY:
recur_char = 'D';
break;
case RECUR_WEEKLY:
recur_char = 'W';
break;
case RECUR_MONTHLY:
recur_char = 'M';
break;
case RECUR_YEARLY:
recur_char = 'Y';
break;
default:
EXIT(_("unknown repetition type"));
return 0;
}
return recur_char;
}
/*
* Correspondance between the letters written in file and the defines
* concerning the recursive type.
*/
int recur_char2def(char type)
{
int recur_def;
switch (type) {
case 'D':
recur_def = RECUR_DAILY;
break;
case 'W':
recur_def = RECUR_WEEKLY;
break;
case 'M':
recur_def = RECUR_MONTHLY;
break;
case 'Y':
recur_def = RECUR_YEARLY;
break;
default:
EXIT(_("unknown character"));
return 0;
}
return recur_def;
}
/* Write days for which recurrent items should not be repeated. */
static void recur_write_exc(llist_t * lexc, FILE * f)
{
llist_item_t *i;
struct tm *lt;
time_t t;
int st_mon, st_day, st_year;
LLIST_FOREACH(lexc, i) {
struct excp *exc = LLIST_GET_DATA(i);
t = exc->st;
lt = localtime(&t);
st_mon = lt->tm_mon + 1;
st_day = lt->tm_mday;
st_year = lt->tm_year + 1900;
fprintf(f, " !%02u/%02u/%04u", st_mon, st_day, st_year);
}
}
/* Load the recursive appointment description */
struct recur_apoint *recur_apoint_scan(FILE * f, struct tm start, struct tm end,
char type, int freq, struct tm until,
char *note, llist_t * exc, char state)
{
char buf[BUFSIZ], *nl;
time_t tstart, tend, tuntil;
/* Read the appointment description */
if (!fgets(buf, sizeof buf, f))
return NULL;
nl = strchr(buf, '\n');
if (nl) {
*nl = '\0';
}
start.tm_sec = end.tm_sec = 0;
start.tm_isdst = end.tm_isdst = -1;
start.tm_year -= 1900;
start.tm_mon--;
end.tm_year -= 1900;
end.tm_mon--;
tstart = mktime(&start);
tend = mktime(&end);
if (until.tm_year != 0) {
until.tm_hour = 23;
until.tm_min = 59;
until.tm_sec = 0;
until.tm_isdst = -1;
until.tm_year -= 1900;
until.tm_mon--;
tuntil = mktime(&until);
} else {
tuntil = 0;
}
EXIT_IF(tstart == -1 || tend == -1 || tstart > tend || tuntil == -1,
_("date error in appointment"));
return recur_apoint_new(buf, note, tstart, tend - tstart, state,
recur_char2def(type), freq, tuntil, exc);
}
/* Load the recursive events from file */
struct recur_event *recur_event_scan(FILE * f, struct tm start, int id,
char type, int freq, struct tm until,
char *note, llist_t * exc)
{
char buf[BUFSIZ], *nl;
time_t tstart, tuntil;
/* Read the event description */
if (!fgets(buf, sizeof buf, f))
return NULL;
nl = strchr(buf, '\n');
if (nl) {
*nl = '\0';
}
start.tm_hour = until.tm_hour = 0;
start.tm_min = until.tm_min = 0;
start.tm_sec = until.tm_sec = 0;
start.tm_isdst = until.tm_isdst = -1;
start.tm_year -= 1900;
start.tm_mon--;
if (until.tm_year != 0) {
until.tm_year -= 1900;
until.tm_mon--;
tuntil = mktime(&until);
} else {
tuntil = 0;
}
tstart = mktime(&start);
EXIT_IF(tstart == -1 || tuntil == -1, _("date error in event"));
return recur_event_new(buf, note, tstart, id, recur_char2def(type), freq,
tuntil, exc);
}
/* Writting of a recursive appointment into file. */
void recur_apoint_write(struct recur_apoint *o, FILE * f)
{
struct tm *lt;
time_t t;
t = o->start;
lt = localtime(&t);
fprintf(f, "%02u/%02u/%04u @ %02u:%02u", lt->tm_mon + 1, lt->tm_mday,
1900 + lt->tm_year, lt->tm_hour, lt->tm_min);
t = o->start + o->dur;
lt = localtime(&t);
fprintf(f, " -> %02u/%02u/%04u @ %02u:%02u", lt->tm_mon + 1, lt->tm_mday,
1900 + lt->tm_year, lt->tm_hour, lt->tm_min);
t = o->rpt->until;
if (t == 0) { /* We have an endless recurrent appointment. */
fprintf(f, " {%d%c", o->rpt->freq, recur_def2char(o->rpt->type));
} else {
lt = localtime(&t);
fprintf(f, " {%d%c -> %02u/%02u/%04u", o->rpt->freq,
recur_def2char(o->rpt->type), lt->tm_mon + 1, lt->tm_mday,
1900 + lt->tm_year);
}
recur_write_exc(&o->exc, f);
fputs("} ", f);
if (o->note != NULL)
fprintf(f, ">%s ", o->note);
if (o->state & APOINT_NOTIFY)
fputc('!', f);
else
fputc('|', f);
fprintf(f, "%s\n", o->mesg);
}
/* Writting of a recursive event into file. */
void recur_event_write(struct recur_event *o, FILE * f)
{
struct tm *lt;
time_t t;
int st_mon, st_day, st_year;
int end_mon, end_day, end_year;
t = o->day;
lt = localtime(&t);
st_mon = lt->tm_mon + 1;
st_day = lt->tm_mday;
st_year = lt->tm_year + 1900;
t = o->rpt->until;
if (t == 0) { /* We have an endless recurrent event. */
fprintf(f, "%02u/%02u/%04u [%d] {%d%c", st_mon, st_day, st_year, o->id,
o->rpt->freq, recur_def2char(o->rpt->type));
} else {
lt = localtime(&t);
end_mon = lt->tm_mon + 1;
end_day = lt->tm_mday;
end_year = lt->tm_year + 1900;
fprintf(f, "%02u/%02u/%04u [%d] {%d%c -> %02u/%02u/%04u", st_mon,
st_day, st_year, o->id, o->rpt->freq,
recur_def2char(o->rpt->type), end_mon, end_day, end_year);
}
recur_write_exc(&o->exc, f);
fputs("} ", f);
if (o->note != NULL)
fprintf(f, ">%s ", o->note);
fprintf(f, "%s\n", o->mesg);
}
/* Write recursive items to file. */
void recur_save_data(FILE * f)
{
llist_item_t *i;
LLIST_FOREACH(&recur_elist, i) {
struct recur_event *rev = LLIST_GET_DATA(i);
recur_event_write(rev, f);
}
LLIST_TS_LOCK(&recur_alist_p);
LLIST_TS_FOREACH(&recur_alist_p, i) {
struct recur_apoint *rapt = LLIST_GET_DATA(i);
recur_apoint_write(rapt, f);
}
LLIST_TS_UNLOCK(&recur_alist_p);
}
/*
* The two following defines together with the diff_days, diff_months and
* diff_years functions were provided by Lukas Fleischer to correct the wrong
* calculation of recurrent dates after a turn of year.
*/
#define BC(start, end, bs) \
(((end) - (start) + ((start) % bs) - ((end) % bs)) / bs \
+ ((((start) % bs) == 0) ? 1 : 0))
#define LEAPCOUNT(start, end) \
(BC(start, end, 4) - BC(start, end, 100) + BC(start, end, 400))
/* Calculate the difference in days between two dates. */
static long diff_days(struct tm lt_start, struct tm lt_end)
{
long diff;
if (lt_end.tm_year < lt_start.tm_year)
return 0;
diff = lt_end.tm_yday - lt_start.tm_yday;
if (lt_end.tm_year > lt_start.tm_year) {
diff += (lt_end.tm_year - lt_start.tm_year) * YEARINDAYS;
diff += LEAPCOUNT(lt_start.tm_year + TM_YEAR_BASE,
lt_end.tm_year + TM_YEAR_BASE - 1);
}
return diff;
}
/* Calculate the difference in months between two dates. */
static long diff_months(struct tm lt_start, struct tm lt_end)
{
long diff;
if (lt_end.tm_year < lt_start.tm_year)
return 0;
diff = lt_end.tm_mon - lt_start.tm_mon;
diff += (lt_end.tm_year - lt_start.tm_year) * YEARINMONTHS;
return diff;
}
/* Calculate the difference in years between two dates. */
static long diff_years(struct tm lt_start, struct tm lt_end)
{
return lt_end.tm_year - lt_start.tm_year;
}
static int exc_inday(struct excp *exc, long day_start)
{
return (exc->st >= day_start && exc->st < day_start + DAYINSEC);
}
/*
* Check if the recurrent item belongs to the selected day, and if yes, store
* the start date of the occurrence that belongs to the day in a buffer.
*
* This function was improved thanks to Tony's patch.
* Thanks also to youshe for reporting daylight saving time related problems.
* And finally thanks to Lukas for providing a patch to correct the wrong
* calculation of recurrent dates after a turn of years.
*/
unsigned
recur_item_find_occurrence(long item_start, long item_dur, llist_t * item_exc,
int rpt_type, int rpt_freq, long rpt_until,
long day_start, unsigned *occurrence)
{
struct date start_date;
long diff, span;
struct tm lt_day, lt_item, lt_item_day;
time_t t;
if (day_start < item_start - DAYINSEC + 1)
return 0;
if (rpt_until != 0 && day_start >= rpt_until + item_dur)
return 0;
t = day_start;
lt_day = *localtime(&t);
t = item_start;
lt_item = *localtime(&t);
lt_item_day = lt_item;
lt_item_day.tm_sec = lt_item_day.tm_min = lt_item_day.tm_hour = 0;
span = (item_start - mktime(<_item_day) + item_dur - 1) / DAYINSEC;
switch (rpt_type) {
case RECUR_DAILY:
diff = diff_days(lt_item_day, lt_day) % rpt_freq;
lt_item_day.tm_mday = lt_day.tm_mday - diff;
lt_item_day.tm_mon = lt_day.tm_mon;
lt_item_day.tm_year = lt_day.tm_year;
break;
case RECUR_WEEKLY:
diff = diff_days(lt_item_day, lt_day) % (rpt_freq * WEEKINDAYS);
lt_item_day.tm_mday = lt_day.tm_mday - diff;
lt_item_day.tm_mon = lt_day.tm_mon;
lt_item_day.tm_year = lt_day.tm_year;
break;
case RECUR_MONTHLY:
diff = diff_months(lt_item_day, lt_day) % rpt_freq;
if (lt_day.tm_mday < lt_item_day.tm_mday)
diff++;
lt_item_day.tm_mon = lt_day.tm_mon - diff;
lt_item_day.tm_year = lt_day.tm_year;
break;
case RECUR_YEARLY:
diff = diff_years(lt_item_day, lt_day) % rpt_freq;
if (lt_day.tm_mon < lt_item_day.tm_mon ||
(lt_day.tm_mon == lt_item_day.tm_mon &&
lt_day.tm_mday < lt_item_day.tm_mday))
diff++;
lt_item_day.tm_year = lt_day.tm_year - diff;
break;
default:
EXIT(_("unknown item type"));
}
lt_item_day.tm_isdst = lt_day.tm_isdst;
t = mktime(<_item_day);
if (LLIST_FIND_FIRST(item_exc, t, exc_inday))
return 0;
if (rpt_until != 0 && t > rpt_until)
return 0;
lt_item_day = *localtime(&t);
diff = diff_days(lt_item_day, lt_day);
if (diff <= span) {
if (occurrence) {
start_date.dd = lt_item_day.tm_mday;
start_date.mm = lt_item_day.tm_mon + 1;
start_date.yyyy = lt_item_day.tm_year + 1900;
*occurrence = date2sec(start_date, lt_item.tm_hour, lt_item.tm_min);
}
return 1;
} else
return 0;
}
unsigned
recur_apoint_find_occurrence(struct recur_apoint *rapt, long day_start,
unsigned *occurrence)
{
return recur_item_find_occurrence(rapt->start, rapt->dur, &rapt->exc,
rapt->rpt->type, rapt->rpt->freq,
rapt->rpt->until, day_start, occurrence);
}
unsigned
recur_event_find_occurrence(struct recur_event *rev, long day_start,
unsigned *occurrence)
{
return recur_item_find_occurrence(rev->day, DAYINSEC, &rev->exc,
rev->rpt->type, rev->rpt->freq,
rev->rpt->until, day_start, occurrence);
}
/* Check if a recurrent item belongs to the selected day. */
unsigned
recur_item_inday(long item_start, long item_dur, llist_t * item_exc,
int rpt_type, int rpt_freq, long rpt_until, long day_start)
{
/* We do not need the (real) start time of the occurrence here, so just
* ignore the buffer. */
return recur_item_find_occurrence(item_start, item_dur, item_exc, rpt_type,
rpt_freq, rpt_until, day_start, NULL);
}
unsigned recur_apoint_inday(struct recur_apoint *rapt, long day_start)
{
return recur_item_inday(rapt->start, rapt->dur, &rapt->exc, rapt->rpt->type,
rapt->rpt->freq, rapt->rpt->until, day_start);
}
unsigned recur_event_inday(struct recur_event *rev, long day_start)
{
return recur_item_inday(rev->day, DAYINSEC, &rev->exc, rev->rpt->type,
rev->rpt->freq, rev->rpt->until, day_start);
}
/*
* Delete a recurrent event from the list (if delete_whole is not null),
* or delete only one occurence of the recurrent event.
*/
void
recur_event_erase(long start, unsigned num, unsigned delete_whole,
enum eraseflg flag)
{
llist_item_t *i;
i = LLIST_FIND_NTH(&recur_elist, num, start, recur_event_inday);
if (!i)
EXIT(_("event not found"));
struct recur_event *rev = LLIST_GET_DATA(i);
if (delete_whole) {
switch (flag) {
case ERASE_FORCE_ONLY_NOTE:
erase_note(&rev->note);
break;
case ERASE_CUT:
recur_event_free_bkp();
recur_event_dup(rev, &bkp_cut_recur_event);
erase_note(&rev->note);
/* FALLTHROUGH */
default:
LLIST_REMOVE(&recur_elist, i);
mem_free(rev->mesg);
if (rev->rpt) {
mem_free(rev->rpt);
rev->rpt = 0;
}
free_exc_list(&rev->exc);
mem_free(rev);
break;
}
} else
recur_add_exc(&rev->exc, start);
}
/*
* Delete a recurrent appointment from the list (if delete_whole is not null),
* or delete only one occurence of the recurrent appointment.
*/
void
recur_apoint_erase(long start, unsigned num, unsigned delete_whole,
enum eraseflg flag)
{
llist_item_t *i;
int need_check_notify = 0;
i = LLIST_TS_FIND_NTH(&recur_alist_p, num, start, recur_apoint_inday);
if (!i)
EXIT(_("appointment not found"));
struct recur_apoint *rapt = LLIST_GET_DATA(i);
LLIST_TS_LOCK(&recur_alist_p);
if (notify_bar() && flag != ERASE_FORCE_ONLY_NOTE)
need_check_notify = notify_same_recur_item(rapt);
if (delete_whole) {
switch (flag) {
case ERASE_FORCE_ONLY_NOTE:
erase_note(&rapt->note);
break;
case ERASE_CUT:
recur_apoint_free_bkp();
recur_apoint_dup(rapt, &bkp_cut_recur_apoint);
erase_note(&rapt->note);
/* FALLTHROUGH */
default:
LLIST_TS_REMOVE(&recur_alist_p, i);
mem_free(rapt->mesg);
if (rapt->rpt) {
mem_free(rapt->rpt);
rapt->rpt = 0;
}
free_exc_list(&rapt->exc);
mem_free(rapt);
if (need_check_notify)
notify_check_next_app(0);
break;
}
} else {
recur_add_exc(&rapt->exc, start);
if (need_check_notify)
notify_check_next_app(0);
}
LLIST_TS_UNLOCK(&recur_alist_p);
}
/*
* Read days for which recurrent items must not be repeated
* (such days are called exceptions).
*/
void recur_exc_scan(llist_t * lexc, FILE * data_file)
{
int c = 0;
struct tm day;
LLIST_INIT(lexc);
while ((c = getc(data_file)) == '!') {
ungetc(c, data_file);
if (fscanf(data_file, "!%d / %d / %d ",
&day.tm_mon, &day.tm_mday, &day.tm_year) != 3) {
EXIT(_("syntax error in item date"));
}
day.tm_hour = 0;
day.tm_min = day.tm_sec = 0;
day.tm_isdst = -1;
day.tm_year -= 1900;
day.tm_mon--;
struct excp *exc = mem_malloc(sizeof(struct excp));
exc->st = mktime(&day);
LLIST_ADD(lexc, exc);
}
}
static int recur_apoint_starts_before(struct recur_apoint *rapt, long time)
{
return rapt->start < time;
}
/*
* Look in the appointment list if we have an item which starts before the item
* stored in the notify_app structure (which is the next item to be notified).
*/
struct notify_app *recur_apoint_check_next(struct notify_app *app, long start,
long day)
{
llist_item_t *i;
unsigned real_recur_start_time;
LLIST_TS_LOCK(&recur_alist_p);
LLIST_TS_FIND_FOREACH(&recur_alist_p, app->time, recur_apoint_starts_before,
i) {
struct recur_apoint *rapt = LLIST_TS_GET_DATA(i);
if (recur_apoint_find_occurrence(rapt, day, &real_recur_start_time) &&
real_recur_start_time > start) {
app->time = real_recur_start_time;
app->txt = mem_strdup(rapt->mesg);
app->state = rapt->state;
app->got_app = 1;
}
}
LLIST_TS_UNLOCK(&recur_alist_p);
return app;
}
/* Switch recurrent item notification state. */
void recur_apoint_switch_notify(struct recur_apoint *rapt)
{
LLIST_TS_LOCK(&recur_alist_p);
rapt->state ^= APOINT_NOTIFY;
if (notify_bar())
notify_check_repeated(rapt);
LLIST_TS_UNLOCK(&recur_alist_p);
}
void recur_event_paste_item(void)
{
long new_start, time_shift;
llist_item_t *i;
new_start = date2sec(*calendar_get_slctd_day(), 0, 0);
time_shift = new_start - bkp_cut_recur_event.day;
bkp_cut_recur_event.day += time_shift;
if (bkp_cut_recur_event.rpt->until != 0)
bkp_cut_recur_event.rpt->until += time_shift;
LLIST_FOREACH(&bkp_cut_recur_event.exc, i) {
struct excp *exc = LLIST_GET_DATA(i);
exc->st += time_shift;
}
recur_event_new(bkp_cut_recur_event.mesg, bkp_cut_recur_event.note,
bkp_cut_recur_event.day, bkp_cut_recur_event.id,
bkp_cut_recur_event.rpt->type,
bkp_cut_recur_event.rpt->freq,
bkp_cut_recur_event.rpt->until, &bkp_cut_recur_event.exc);
recur_event_free_bkp();
}
void recur_apoint_paste_item(void)
{
long new_start, time_shift;
llist_item_t *i;
new_start = date2sec(*calendar_get_slctd_day(),
get_item_hour(bkp_cut_recur_apoint.start),
get_item_min(bkp_cut_recur_apoint.start));
time_shift = new_start - bkp_cut_recur_apoint.start;
bkp_cut_recur_apoint.start += time_shift;
if (bkp_cut_recur_apoint.rpt->until != 0)
bkp_cut_recur_apoint.rpt->until += time_shift;
LLIST_FOREACH(&bkp_cut_recur_event.exc, i) {
struct excp *exc = LLIST_GET_DATA(i);
exc->st += time_shift;
}
recur_apoint_new(bkp_cut_recur_apoint.mesg, bkp_cut_recur_apoint.note,
bkp_cut_recur_apoint.start, bkp_cut_recur_apoint.dur,
bkp_cut_recur_apoint.state, bkp_cut_recur_apoint.rpt->type,
bkp_cut_recur_apoint.rpt->freq,
bkp_cut_recur_apoint.rpt->until, &bkp_cut_recur_apoint.exc);
if (notify_bar())
notify_check_repeated(&bkp_cut_recur_apoint);
recur_apoint_free_bkp();
}